A Lesson Learned from BSI Error Service: A Twitter Text Mining Data Approach Using NVivo

Nadia Nurul Izza, Evania Herindar, Nashr Akbar

Abstract


This research extensively examines  Twitter trend data related to BSI (Bank Syariah Indonesia) error services, collecting 1,014 tweets in real-time using NCapture from NVivo 12 Plus within the timeframe of May 8-16, 2023. The key findings highlight that 81% of conversations regarding BSI error services carry a negative sentiment. Additionally, a word cloud identifies key terms such as "services" (2.21%), "transactions" (0.87%), "ransomware" (0.74%), and "trust" (0.42%). As a concrete solution, the research recommends enhancing the transparency of BSI management to the public and fostering close collaboration with relevant authorities such as OJK, BI, and LPS. Furthermore, the strengthening of BSI's cybersecurity is emphasized to mitigate risks. These findings not only provide in-depth insights but also present practical steps that can be implemented to protect consumers and restore public trust in the Islamic banking sector. As a valuable contribution to the literature, this research not only offers a snapshot of the current situation but also identifies relevant directions for future research. Overall, the study integrates comprehensive data analysis with impactful recommendations, establishing a robust foundation for understanding and continuous improvement in the management of BSI error services. Notably, this research is the first to use NVivo in collecting Twitter data related to BSI error services

Keywords


BSI, Service, Error, Twitter

Full Text:

PDF

References


Achsani, M. N. F. F., & Kassim, S. (2021). Determinant of Indonesian Banking Profitability: Case Study Dual Banking System. International Journal of Islamic Economics and Finance (IJIEF), 4(SI). https://doi.org/10.18196/ijief.v4i0.10464

Alhojailan, M. I. (2012). Thematic analysis : a critical review of its process and evaluation. West East Journal of Social Sciences, 1(1), 8– 21.

Alotaibi, D. M. S. (2013). The Impact of Twitter on Saudi Banking Sectors in the Presence Of Social Media: An Evaluative Study. International Research: Journal of Library & Information Science, 3(4), 618–630.

Andrian, B., Simanungkalit, T., Budi, I., & Wicaksono, A. F. (2022). Sentiment Analysis on Customer Satisfaction of Digital Banking in Indonesia. International Journal of Advanced Computer Science and Applications, 13(3). https://doi.org/10.14569/IJACSA.2022.0130356

Basuki Kurniawan, T., Zaki Zakaria, M., & Aqil Azfar Bin Uzailee, M. (n.d.). Sentiment Analysis on Users’ Satisfaction for Mobile Banking Apps in Malaysia. In Journal of Data Science (Vol. 2022). http://ipublishing.intimal.edu.my/jods.html

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.

Cahyono, E. F., Rani, L. N., & Kassim, S. (2020). Perceptions of the 7P Marketing Mix of Islamic banks in Indonesia: What Do Twitter Users Say About It? International Journal of Innovation, Creativity and Change, 11(11), 300–319.

Fadli, A., Sembiring, B. K. F., & Situmorang, S. H. (2023). Analysis Of Brand Image, Brand Trust, Customer Experience On Customer Satisfaction Through Perceived Value Bank Syariah Indonesia (Study At BSI KCP Krakatau). International Journal of Economic, Business, Accounting, Agriculture Management and Sharia Administration (IJEBAS), 3(2), 445-455.

Fakhrunnas, F., & Bekti Hendrie Anto, M. (2023). Assessing the Islamic banking contribution to financial stability in Indonesia: A non-linear approach. Banks and Bank Systems, 18(1), 150–162. https://doi.org/10.21511/bbs.18(1).2023.13

Ghobakhloo, M. (2022). Design of a personalized recommender system using sentiment analysis in social media (case study: banking system). Social Network Analysis and Mining, 12(1), 84. https://doi.org/10.1007/s13278-022-00900-0

Haidar, A., As-Salafiyah, A., & Herindar, E. (2022). Sentiment Analysis of Digital Sharia Banking. Ekonomi Islam Indonesia, 4(1). https://doi.org/10.58968/eii.v4i1.72

Help NVivo 12 Plus. (2020). https://helpnv.qsrinternational.com/12/win/v12.1.112-d3ea61/Content/queries/text-search-query.htm

Hootsuite, & W. A. Social. (2022). Digital 2022 Global Overview Report.

Izza, N. N. (2022). Scientometric Analysis of Islamic Bank in Indonesia. Faraid & Wealth Management, 2(1).

Izza, N. N., & Rusydiana, A. S. (2022). What Scopus Metadata Says About 32 Years of Islamic Accounting. Annual International Conference on Islamic Economics and Business (AICIEB), 2(1), 323–338.

Izza, N. N., & Rusydiana, A. S. (2023). Qualitative Review on Zakat Innovation: NVivo 12 Approach. 6th ICONZ Indonesian Conference of Zakat, 11–21.

Izza, N. N., Sari, M., Kahila, M., & Al-ayubi, S. (2023). A Twitter Sentiments Analysis on Islamic Banking Using Drone Emprit Academic (DEA): Evidence from Indonesia. Jurnal Ekonomi Syariah Teori dan Terapan, 10(5).

Kaurav, R. P. S., Suresh, K. G., Narula, S., & Baber, R. (2020). New Education Policy: Qualitative (Contents) Analysis and Twitter Mining (Sentiment Analysis). Journal of Content, Community and Communication, 12(November 1956), 4–13. https://doi.org/10.31620/JCCC.12.20/02

Kompas. (2023). BSI Selidiki Dugaan Serangan Siber yang Bikin Mobile Banking Sampai Layanan Teller Eror. https://www.kompas.tv/ekonomi/405591/bsi-selidiki-dugaan-serangan-siber-yang-bikin-mobile-banking-sampai-layanan-teller-eror?page=all

Mohamed, M. A. (2019). The impact of mobile banking on economic development in puntland-somalia. International Journal of Contemporary Applied Researches, 6(12), 66-89.

Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic analysis: striving to meet the trustworthiness criteria. International Journal of Qualitative Methods, 16(1), 1–13. https://doi.org/ 10.1177/1609406917733847

Pazmiño, R., Badillo, F., González, M. C., & García-Peñalvo, F. J. (2020). Ecuadorian Higher Education in COVID-19: A Sentiment Analysis. ACM International Conference Proceeding Series, March, 758–764. https://doi.org/10.1145/3434780.3436679

Purwanto, E., Deviny, J., & Mutahar, A. M. (2020). The mediating role of trust in the relationship between corporate image, security, word of mouth and loyalty in M-banking using among the millennial generation in Indonesia. Management & Marketing. Challenges for the Knowledge Society, 15(2), 255-274.

Rahmanti, A. R., Ningrum, D. N. A., Lazuardi, L., Yang, H. C., & Li, Y. C. (2021). Islamic Banking on Twitter: An Analysis of Users and Networks. Computer Methods and Programs in Biomedicine, 205.

Rahmayati, R. (2021). Competition Strategy In The Islamic Banking Industry: An Empirical Review. International Journal Of Business, Economics, And Social Development, 2(2), 65-71.

Rahul, R., Prasad, K. M., & Refonaa, J. (2021). Multi-strategy Sentiment Analysis of Banking Reviews Based on Semantic Fuzziness (pp. 605–613). https://doi.org/10.1007/978-981-15-7511-2_61

Syapsan, S. (2019). The effect of service quality, innovation towards competitive advantages and sustainable economic growth: Marketing mix strategy as mediating variable. Benchmarking: An International Journal, 26(4), 1336-1356.

Tiara, E., Achmad, D., & Nasarruddin, R. B. (2023). An Analysis of Bank Syariah Indonesia Digitalization. Talaa: Journal of Islamic Finance, 3(1), 38-50.

Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. WIREs Data Mining and Knowledge Discovery, 8(4). https://doi.org/10.1002/widm.1253




DOI: http://dx.doi.org/10.21043/malia.v8i1.23436

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 MALIA: Journal of Islamic Banking and Finance

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

images

http://journal.stainkudus.ac.id/indexing/moraref.jpg