Analysis of the Impact of Population Growth in DKI Jakarta Using Logistic Model

Dimas Kukuh Nur Rachim, Ahmad Firdaus, Arif Gozali Warso Saputro

Abstract


The rapid population growth in the DKI Jakarta area has an impact on its population and creates an unfriendly environment. The author is motivated to analyse the effect of the population growth rate in DKI Jakarta over the next 10 years. The process of estimating population growth is calculated by a mathematical model called the logistic model. The logistic model is the model that developed by differential equation like the following  . This model illustrates that population growth is determined by the difference between the number of births and deaths of the population. In addition, an analysis of the resulting environmental impact and the impact of its handling will also be discussed. Based on estimation, the population in DKI Jakarta Province in 2022 is predicted around 10,636.685 people and it will reach 10,938.900 in 2030. It means there will be a 3% increase in population from 2019 to 2030 in DKI Jakarta Province. These values increase annually and they are predicted to have an impact on increasing the traffic congestion by 3%, from 70% to 72.1%. Another result has also occurred in air pollution. The average of air pollution increasing by 3%, from 39.6  to 40.79 . These two factors show that the increase of population growth will have an impact on increasing the average traffic congestion and the percentage of air pollution in DKI Jakarta.

 

Pertumbuhan penduduk yang sangat pesat di wilayah DKI Jakarta memiliki dampak pada populasinya serta menciptakan lingkungan yang kurang ramah. Hal ini memotivsi penulis untuk menganalisis dampak dari laju pertumbuhan penduduk di DKI Jakarta selama 10 tahun mendatang. Proses estimasi pertumbuhan penduduk dikalkulasi mengunakan pemodelan matematika yang bernama model logistik.Model logistik adalah sebuah model matematika yang dikembangkan menggunakan persamaan differensial sebagaimana berikut . Model logistik mengilustrasikan pertumbuhan populasi penduduk sebagai selisih antara jumlah populasi yang lahir dengan jumlah populasi yang meninggal. Selain itu juga, akan dipaparkan mengenai dampak pencemaran lingkungan yang mungkin akan muncul di waktu yang akan datang. Berdasarkan hasil estimasi diperoleh prediksi jumlah penduduk di Provinsi DKI Jakarta pada tahun 2022 sebanyak 10,636.685 jiwa dan pada tahun 2030 akan mencapai 10,938.900. Hal tersebut berarti akan ada peningkatan sekitar 3% penduduk dari tahun 2019 hingga tahun 2030 di Provinsi DKI Jakarta. Nilai pertumbuhan populasi tersebut meninggkat setiap tahunnya dan diprediksi dapat meningkatkan kepadatan lalu lintas sebesar 3%, dari 70% menjadi 72.1% di tahun 2030. Hasil lain yang diprediksi akan terjadi ialah peningkatan rata-rata polusi udara sebesar 3%, dari 39.6  menjadi 40.79  pada tahun 2030. Kedua faktor ini menunjukan bahwa peniongkatan jumlah populasi penduduk di Provinsi DKI Jakarta dapat memberikan dampak pada peningkatan rata-rata kepadatan kendaraan dan polusi udara di Provinsi DKI Jakarta.


Keywords


Logistic Model; Population Growth; Social Impact

Full Text:

PDF

References


BPS Provinsi DKI Jakarta. (n.d.). Retrieved May 12, 2022, from https://jakarta.bps.go.id/indicator/12/124/1/penduduklaju%20pertumbuhan-penduduk-distribusi-persentase-penduduk-kepadatan-pendudukrasio-jenis-kelamin-penduduk-menurut-provinsi-kabupaten-kota.html.

Chen, Y. (2014). An Allometric Scaling Relation Based on Logistic Growth of Cities. Chaos, Solitons & Fractals, 65, 65-77.

Guerrini, L. (2010). A closed-form solution to the Ramsey model with logistic population growth. Economic Modelling, 27(5), 1178–1182.

Hajiahmadi, M., Van De Weg, G. S., Tampère, C. M. J., Corthout, R., Hegyi, A., De Schutter, B., & Hellendoorn, H. (2016). Integrated predictive control of freeway networks using the extended link transmission model. IEEE Transactions on Intelligent Transportation Systems, 17(1), 65–78. https://doi.org/10.1109/TITS.2015.2460695.

Heidrich, P., Jayathunga, Y., Bock, W., & Götz, T. (2021). Prediction of Dengue Cases Based on Human Mobility and Seasonality—An example for the city of Jakarta. Mathematical Methods in the Applied Sciences, 44(17), 13633-13658.

Hsieh, S. C. (2014). Analyzing urbanization data using rural–urban interaction model and logistic growth model. Computers, Environment and urban systems, 45, 89-100.

Jacobson, M. Z. (2009). Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2(2), 148–173.

Jakarta traffic report | TomTom Traffic Index. (n.d.). Retrieved May 12, 2022, from https://www.tomtom.com/en_gb/traffic-index/jakarta-traffic/

Kamh, Y. Z., Khalifa, M. A., & El-Bahrawy, A. N. (2016). Comparative study of community resilience in mega coastal cities threatened by sea level rise: The case of Alexandria and Jakarta. Procedia-Social and Behavioral Sciences, 216, 503-517.

Kota Paling Berpolusi di Dunia 2021 - Rangking PM2.5 | IQAir. (n.d.). Retrieved May 12, 2022, from https://www.iqair.com/id/world-most-polluted-cities?continent=59af92b13e70001c1bd78e53&country=Rqrg4reHqi8taY4re&state=NTiBSqGJNnpYJFgxw&page=1&perPage=50&cities=

Mulligan, G. F. (2006). Logistic population growth in the world’s largest cities. Geographical Analysis, 38(4), 344–370.

Pagalay, U. (2009). Mathematical modelling: Aplikasi pada kedokteran, imunologi, biologi, ekonomi, dan perikanan. UIN-Maliki Press.

Qureshi, S., Yusuf, A., & Aziz, S. (2021). Fractional numerical dynamics for the logistic population growth model under Conformable Caputo: a case study with real observations. Physica Scripta, 96(11), 114002.

Rachim, Dimas K.N., Salmah, & Solekhudin, I. (2017). Link transmission model involving multi class vehicle. Proceedings of the 2017 5th International Conference on Instrumentation, Control, and Automation, ICA 2017, 158–162. https://doi.org/10.1109/ICA.2017.8068432.

Rachim, Dimas Kukuh Nur, & Firdaus, A. (2021). Pengaruh Konsentrasi Karbondioksida (CO2) Terhadap Kondisi Iklim Di Antartika. Jurnal Of Education in Mathematics, Science, and Technology, 4(1).

Rukmana, D., & Ramadhani, D. (2021). Income inequality and socioeconomic segregation in Jakarta. Urban Socio-Economic Segregation and Income Inequality (pp. 135-152). Springer, Cham.

Shatkin, G. (2022). Financial Sector Actors, the State, and the Rescaling of Jakarta’s Extended Urban Region. Land Use Policy, 112, 104-159.

Syalianda, S. I., & Kusumastuti, R. D. (2021). Implementation of smart city concept: A case of Jakarta Smart City, Indonesia. IOP Conference Series: Earth and Environmental Science, 716(1), 012128. doi: 10.1088/1755-1315/716/1/012128.

Tong, M., Yan, Z., & Chao, L. (2020). Research on a Grey Prediction Model of Population Growth Based on a Logistic Approach. Discrete Dynamics in Nature and Society, 2020. https://doi.org/10.1155/2020/2416840.

Yoo, G., Kim, A. R., & Hadi, S. (2014). A Methodology to Assess Environmental Vulnerability in A Coastal City: Application to Jakarta, Indonesia. Ocean & coastal management, 102, 169-177.

Vieira, B. H., Hiar, N. H., & Cardoso, G. C. (2022). Uncertainty Reduction in Logistic Growth Regression Using Surrogate Systems Carrying Capacities: a COVID-19 Case Study. Brazilian Journal of Physics, 52(1), 1-8.

Zhu, J., & Simarmata, H. A. (2015). Formal Land Rights Versus Informal Land Rights: Governance for Sustainable Urbanization in the Jakarta Metropolitan Region, Indonesia. Land Use Policy, 43, 63-73.




DOI: http://dx.doi.org/10.21043/jpmk.v5i1.14276

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Editorial and Administration Office:

Jurnal Pendidikan Matematika (Kudus)
Tadris Matematika, Tarbiyah Faculty, Institut Agama Islam Negeri Kudus
Jl. Conge Ngembalrejo Po Box 51, Kudus, Jawa Tengah, Indonesia, Kode Pos: 59322

Email: [email protected]

P-ISSN 2615-3939 | E-ISSN 2723-1186