Beberapa Metode Pembuktian Teorema Viviani oleh Mahasiswa Calon Guru Matematika
Abstract
Salah satu teorema penting dalam geometri adalah teorema Viviani. Teorema ini dapat dibuktikan, misalnya, dengan menggunakan konsep luas daerah dan sifat-sifat segitiga sama sisi. Kemampuan membuktikan teorema merupakan kompetensi yang perlu dikuasai oleh calon guru matematika. Oleh karena itu, tujuan penelitian ini adalah untuk menginvestigasi kemampuan mahasiswa calon guru matematika dalam membuktikan teorema Viviani ditinjau dari perspektif teori Van Hiele. Penelitian kualitatif yang dilakukan melalui analisis proses perkuliahan geometri ini melibatkan 80 mahasiswa. Dari hasil analisis data ditemukan tiga cara pembuktian berbeda yang dilakukan mahasiswa dalam membuktikan teorema Viviani. Dua cara pembuktian tersebut menggunakan konsep-konsep geometri biasa, dan satu pembuktian lain menggunakan konsep-konsep aljabar. Dapat disimpulkan bahwa, berdasar perspektif teori Van Hiele, mahasiwa telah menggunakan dan mengintegrasikan pengetahuan mereka dalam proses pembuktian yang menandakan tercapainya tingkat berpikir deduktif.
One of the important theorems in geometry is Viviani’s theorem. This theorem can be proved, for instance, by using the concepts of area and an equilateral triangle property. The ability in proving theorems is a competency that should be mastered by prospective mathematics teachers. Therefore, this study aims to investigate the ability of mathematics education students in proving Viviani’s theorem from the perspective of Van Hiele theory. This qualitative study, through an analysis of the learning and teaching process in a geometry course, involved 80 students. The results of the analysis revealed three different proving methods, posed by students, for Viviani’s theorem. Two proofs use geometry concepts, but the other proof uses algebra concepts. In a conclusion, from the Van Hiele theory perspective, the students have used and integrated knowledge in the process of proving which indicates the deductive level of thinking.
Keywords
Full Text:
PDFReferences
Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 31–48.
Depdiknas. (2006). Kurikulum tingkat satuan pendidikan sekolah menengah pertama. Jakarta: Departemen Pendidikan Nasional.
Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational studies in mathematics, 44(1), 5-23.
Herskowitz, R. (1998). About reasoning in geometry. In C. Mammana, & V. Villani (Eds.), Perspective on the teaching of geometry for the 21st century (hal. 29–36). Dordrecht, Boston, London: Kluwer Academic Publishers.
Jupri, A., & Syaodih, E. (2016). Between formal and informal thinking: The use of algebra for solving geometry problems from the perspective of Van Hiele theory. Jurnal Pengajaran Matematika dan Ilmu Pengetahuan Alam, 21(2), 1-7.
Jupri, A., & Herman, T. (2017). Theory and practice of mathematics teacher education: An explorative study at the department of mathematics education, Indonesia University of Education. In Proceedings of International Conference on Mathematics and Science Education. Atlantis Press.
Jupri, A. (2017a). From geometry to algebra and vice versa: Realistic mathematics education principles for analyzing geometry tasks. In AIP Conference Proceedings (Vol. 1830, No. 1, hal. 050001-1-05001-5). AIP Publishing.
Jupri, A. (2017b). Investigating primary school mathematics teachers’ deductive reasoningability through Varignon’s theorem. In IOP Conf. Series: Journal of Physics: Conf. Series 895 (2017) 012080.
Jupri, A. (2018). Peran Teknologi dalam Pembelajaran Matematika dengan Pendekatan Matematika Realistik. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika (hal. 303-314). Lampung: UIN Raden Intan Lampung.
Jupri, A. (2019). Geometri dengan pembuktian dan pemecahan masalah. Jakarta: Bumi Aksara.
Kawasaki, K. I. (2005). Proof without words: Viviani's theorem. Mathematics Magazine, 78(3), 213.
Kemendikbud. (2013). Kurikulum 2013. Kompetensi Dasar: Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs). Jakarta: Kementerian Pendidikan dan Kebudayaan.
Miller, R. L. (2012). On proofs without words. Whitman College, Washington.
Posamentier, A. S. (2002). Advanced Euclidean Geometry: Excursions for Secondary Teachers and Students. New York: Key College Publishing.
Samelson, H. (2003). Proof without words: Viviani's theorem with vectors. Mathematics magazine, 76(3), 225.
Solow, D. (1990). How to read and do proof. New York: John Wiley & Sons.
Van Hiele, P. M. (1999). Developing geometric thinking through activities that begin with play. Teaching Children Mathematics, 6, 310–316.
DOI: http://dx.doi.org/10.21043/jmtk.v3i2.7188
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Editorial and Administration Office:
Jurnal Pendidikan Matematika (Kudus)
Tadris Matematika, Tarbiyah Faculty, Institut Agama Islam Negeri Kudus
Jl. Conge Ngembalrejo Po Box 51, Kudus, Jawa Tengah, Indonesia, Kode Pos: 59322
Email: [email protected]