Solusi Optimal Masalah Transportasi Fuzzy Penuh Menggunakan Total Integral Ranking dan Ranking Score Method

Muhammad Sam'an

Abstract


Abstract.Masalah transportasi fuzzy penuh merupakan masalah transportasi dimana biaya transportasi, jumlah persediaan, jumlah permintaan dan variabel keputusan dinyatakan dalam bentuk bilangan fuzzy. Untuk memecahkan masalah transportasi fuzzy tersebut, parameter bilangan fuzzy harus diubah ke bilangan crisp yang disebut metode perangkingan bilangan fuzzy. Pada tulisan ini diberikan masalah transportasi fuzzy yang diselesaikan menggunakan algoritma transportasi fuzzy dengan metode perangkingan yang berbeda yaitu total integral ranking  dan ranking score method. Algoritma Transportasi Fuzzy dengan perankingan Total integral Ranking menghasilkan solusi dan nilai optimal fuzzy yang lebih besar dibandingankan menggunakan Algoritma Transportasi Fuzzy dengan perankingan menggunakan Ranking Score Methode. Namun itersai yang diilakukan pada Algoritma Transportasi Fuzzy dengan perankingan Total integral Ranking lebih cepat dibandingkan Algoritma Transportasi Fuzzy dengan perankingan Ranking Score Method.

Full Text:

PDF

References


T S Liou and M J J Wang. 1992. Ranking fuzzy numbers with integral value. Fuzzy Set and System. Vol. 50. pp 247-255.https://doi.org/10.1016/0165-0114(92)90223-Q

A Kaur and A Kumar. 2011. A new method for solving fuzzy transportation problems using ranking function. Applied Mathematical Modelling. Vol. 35. pp 5652-5661.

C Sudhagar and K Ganesan. 2012. A Fuzzy Approach to TransportOptimization Problem. Optimisasi Enginering. Vol.17.pp 965–980.

A. Ebrahimnejad, “A simplified new approach for solving fuzzy transportation problem with generalized fuzzy numbers,” Applied Soft Computing. Iran, vol. 19, pp. 171-176, 2014.

D. Hunwisai and P. Kumam, “A method for solving a fuzzy transportation problem via Robust ranking technique and ATM,” Cogent Mathematics. Thailand, vol. 4, pp. 1-11, 2017.

Pandian, P. and Natarajan, G.. 2010. A New Algorithm for Finding a Fuzzy Optimal Solution for Fuzzy Transportation Problems. Applied Mathematical Sciences. Vol.4. no.2. pp 79-90.

F. A. Giarcarlo, C. X. C. A. Barbara, and E. W. Volmir, “New Methodology to Find Initial Solution for Transportation Problems, a Case Study with Fuzzy Parameter,” Applied Mathematical Sciences, vol. 9, pp. 915-927, 2015.

M. R. Fegade, V. A. Jadhav, and A. A. Muley, “Solving Fuzzy Transportation Problem Using Zero Suffix and Robust Ranking Methodology,” IOSR Journal of Engineering (IOSRJEN),vol. 2, pp. 36 – 39, July 2012.

S. Mohanaselvi and K. Ganesan ,”Fuzzy Optimal Solution to Fuzzy Transportation Problem: A New Approach International Journal on Computer Science and Engineering (IJCSE),vol. 4, pp. 367 – 375, March 2012.

A. Edward Samuel and M. Venkatachalapathy, “A New Dual Based Approach for the Unbalanced Fuzzy Transportation Problem,” Applied Mathematical Sciences, vol. 6, pp. 4443-4453, April 2012.

Solikhin, “Metode Fuzzy ASM pada Masalah Transportasi Fuzzy Seimbang,” Seminar Matematika dan Pendidikan Matematika Uny, 2017

D Dinagar, Stephen dan J R Kannan. 2014. On Optimal Total Cost and Optimal Order Quantity for Fuzzy Inventory Model without Shortage. International Journal of Fuzzy Mathematics and Systems. Vol. 4. No.2 pp. 193-201.

M Sam’an, et al, “Optimal solution of full fuzzy transportation problems using total integral ranking,” IOP Conf. Series: Journal of Physics: Conf. Series, 2018.




DOI: http://dx.doi.org/10.21043/jmtk.v1i2.4144

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Editorial and Administration Office:

Jurnal Pendidikan Matematika (Kudus)
Tadris Matematika, Tarbiyah Faculty, Institut Agama Islam Negeri Kudus
Jl. Conge Ngembalrejo Po Box 51, Kudus, Jawa Tengah, Indonesia, Kode Pos: 59322

Email: [email protected]

P-ISSN 2615-3939 | E-ISSN 2723-1186