Solusi Optimal Masalah Transportasi Fuzzy Penuh Menggunakan Total Integral Ranking dan Ranking Score Method
Abstract
Full Text:
PDFReferences
T S Liou and M J J Wang. 1992. Ranking fuzzy numbers with integral value. Fuzzy Set and System. Vol. 50. pp 247-255.https://doi.org/10.1016/0165-0114(92)90223-Q
A Kaur and A Kumar. 2011. A new method for solving fuzzy transportation problems using ranking function. Applied Mathematical Modelling. Vol. 35. pp 5652-5661.
C Sudhagar and K Ganesan. 2012. A Fuzzy Approach to TransportOptimization Problem. Optimisasi Enginering. Vol.17.pp 965–980.
A. Ebrahimnejad, “A simplified new approach for solving fuzzy transportation problem with generalized fuzzy numbers,” Applied Soft Computing. Iran, vol. 19, pp. 171-176, 2014.
D. Hunwisai and P. Kumam, “A method for solving a fuzzy transportation problem via Robust ranking technique and ATM,” Cogent Mathematics. Thailand, vol. 4, pp. 1-11, 2017.
Pandian, P. and Natarajan, G.. 2010. A New Algorithm for Finding a Fuzzy Optimal Solution for Fuzzy Transportation Problems. Applied Mathematical Sciences. Vol.4. no.2. pp 79-90.
F. A. Giarcarlo, C. X. C. A. Barbara, and E. W. Volmir, “New Methodology to Find Initial Solution for Transportation Problems, a Case Study with Fuzzy Parameter,” Applied Mathematical Sciences, vol. 9, pp. 915-927, 2015.
M. R. Fegade, V. A. Jadhav, and A. A. Muley, “Solving Fuzzy Transportation Problem Using Zero Suffix and Robust Ranking Methodology,” IOSR Journal of Engineering (IOSRJEN),vol. 2, pp. 36 – 39, July 2012.
S. Mohanaselvi and K. Ganesan ,”Fuzzy Optimal Solution to Fuzzy Transportation Problem: A New Approach International Journal on Computer Science and Engineering (IJCSE),vol. 4, pp. 367 – 375, March 2012.
A. Edward Samuel and M. Venkatachalapathy, “A New Dual Based Approach for the Unbalanced Fuzzy Transportation Problem,” Applied Mathematical Sciences, vol. 6, pp. 4443-4453, April 2012.
Solikhin, “Metode Fuzzy ASM pada Masalah Transportasi Fuzzy Seimbang,” Seminar Matematika dan Pendidikan Matematika Uny, 2017
D Dinagar, Stephen dan J R Kannan. 2014. On Optimal Total Cost and Optimal Order Quantity for Fuzzy Inventory Model without Shortage. International Journal of Fuzzy Mathematics and Systems. Vol. 4. No.2 pp. 193-201.
M Sam’an, et al, “Optimal solution of full fuzzy transportation problems using total integral ranking,” IOP Conf. Series: Journal of Physics: Conf. Series, 2018.
DOI: http://dx.doi.org/10.21043/jmtk.v1i2.4144
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Editorial and Administration Office:
Jurnal Pendidikan Matematika (Kudus)
Tadris Matematika, Tarbiyah Faculty, Institut Agama Islam Negeri Kudus
Jl. Conge Ngembalrejo Po Box 51, Kudus, Jawa Tengah, Indonesia, Kode Pos: 59322
Email: [email protected]