Inductive and Intuitive in Proving the Identity Element of A Group: A Structure of Argumentation
Abstract
This research applies the Toulmin Argumentation Model in identifying the argumentation structure and proving the identity property of a group with an inductive and intuitive approach. This research is qualitative descriptive research, and the instrument is one problem of proving the identity property of a group. Data were collected from a cohort of 30 students who enrolled in the Introduction to Ring Theory course. All participants selected one Subject based on complete and correct answers for further analysis. The results showed that the Subject used his intuition to take one element, which would then be proven as the identity element of a group. Then, the Subject used an Inductive Warrant to prove it. The Subject only takes one element that fulfils the identity property. However, the Subject states that the conclusion applies in general, which makes the argument invalid because valid arguments are based on deductive. At the same time, students at the college level should use a deductive approach to proof. By using the Toulmin Argumentation Model, the subject's ability to formulate and construct arguments in a proof can be seen as structured and clear. This model allows a systematic explanation and strengthens confidence in the validity of the evidence. This research is expected to enrich the understanding of argumentation structure in inductive proofs of group identity properties and show the potential use of the Toulmin Argumentation Model in identifying more in-depth mathematical argumentation.
Penelitian ini menerapkan Model Argumentasi Toulmin dalam mengidentifikasi struktur argumentasi pada pembuktian sifat identitas suatu grup dengan pendekatan induktif dan intuitif. Penelitian ini termasuk penelitian dekriptif kualitatif, dan instrumen berupa satu soal pembuktian sifat identitas suatu grup. Data diperoleh dari 30 mahasiswa yang menempuh mata kuliah Pengantar Teori Gelanggang. Dari seluruh partisipan, satu subjek dipilih berdasarkan jawaban lengkap dan benar untuk dianalisis lebih lanjut. Hasil penelitian menunjukkan bahwa subjek menggunakan intuisinya dalam mengambil satu elemen yang kemudian akan dibuktikan sebagai elemen identitas suatu Grup. Kemudian Subjek menggunakan Warrant Induktif dalam membuktikannya. Subjek hanya mengambil satu elemen yang memenuhi sifat identitas, namun subjek menyatakan bahwa kesimpulan tersebut berlaku secara umum, yang menjadikan argumenya tidak valid. Karena argumen yang valid didasari pada deduktif. Padahal mahasiswa di tingkat perguruan tinggi seharusnya menggunakan pendekatan deduktif dalam pembuktian. Dengan menggunakan Model Argumentasi Toulmin, kemampuan Subjek dalam merumuskan mengonstruksi argumen dalam pembuktian dapat terlihat terstruktur dan jelas. Model ini memungkinkan penjelasan yang sistematis dan memperkuat kepercayaan terhadap validitas pembuktian. Penelitian ini juga menunjukkan kekuatan metode induktif dan intuitif dalam pembuktian matematika, menunjukkan bagaimana pendekatan ini dapat menghasilkan pemahaman yang lebih komprehensif tentang pembuktian matematika. Penelitian ini diharapkan dapat memperkaya pemahaman mengenai struktur argumentasi dalam pembuktian induktif sifat identitas grup dan menunjukkan potensi penggunaan Model Argumentasi Toulmin dalam mengidentifikasi argumentasi matematika yang lebih mendalam.
Keywords
Full Text:
PDFReferences
Aaidati, I. F., Subanji, S., Sulandra, I. M., & Permadi, H. (2022). Student Argumentation Structure in Solving Statistical Problems Based on Adversity Quotient. Jurnal Pendidikan Matematika, 16(2), 121–140. https://doi.org/10.22342/jpm.16.2.16633.121-140
Andriani, N., Triananda, L., Supardi, S., Saparini, S., & Patriot, E. A. (2023). KEMAMPUAN BERARGUMENTASI SISWA MENGGUNAKAN MODEL TOULMIN PADA MATERI HUKUM NEWTON DI SMP NEGERI 57 PALEMBANG. Jurnal Ilmu Fisika Dan Pembelajarannya (JIFP), 7(2), 33–39. https://doi.org/10.19109/JIFP.V7I2.18355
Antonini, S. (2019). Intuitive Acceptance of Proof by Contradiction. ZDM – Mathematics Education, 51(5), 793–806. https://doi.org/10.1007/S11858-019-01066-4
Arifin, M. Z., & Permadi, H. (2023). Students’ Arguments in Solving Probability Theory Problems Based on The Toulmin Argumentation Model. Eduma : Mathematics Education Learning and Teaching, 12(1), 126–138. https://doi.org/10.24235/EDUMA.V12I1.13404
Arifin, M. Z., Sudirman, S., & Rahardi, R. (2023). Struktur Argumentasi Mahasiswa dalam Pembuktian Sifat Ketertutupan Suatu Grup. Jurnal Cendekia : Jurnal Pendidikan Matematika, 7(3), 2703–2714. https://doi.org/10.31004/CENDEKIA.V7I3.2534
Arnawa, I. M., Yanita, Ginting, B., Yerizon, & Nita, S. (2020). Improvement a positive attitude towards abstract algebra through APOS theory approach. Journal of Physics: Conference Series, 1503(1), 012008. https://doi.org/10.1088/1742-6596/1503/1/012008
Astuti, A., & Zulhendri, Z. (2017). Analisis Kesulitan Belajar Struktur Aljabar pada Mahasiswa Semester III Jurusan Pendidikan Matematika STKIP Pahlawan Tuanku Tambusai Riau Tahun Ajaran 2015/2016. Jurnal Cendekia : Jurnal Pendidikan Matematika, 1(1), 17–23. https://doi.org/10.31004/CENDEKIA.V1I1.5
Banegas, J. A. (2013). Argumentation in Mathematics BT - The Argument of Mathematics (A. Aberdein & I. J. Dove, Eds.; pp. 47–60). Springer Netherlands. https://doi.org/10.1007/978-94-007-6534-4_4
Bizup, J. (2009). The Uses of Toulmin in Composition Studies. College Composition and Communication, 61(1), 1–23.
CadwalladerOlsker, T. (2011). What Do We Mean by Mathematical Proof? Journal of Humanistic Mathematics, 1(1), 33–60. https://doi.org/10.5642/jhummath.201101.04
Faizah, L., Probosari, R. M., & Karyanto, P. (2018). Penerapan Problem Based Learning Untuk Meningkatkan Keterampilan Argumentasi Lisan Siswa Kelas XI Pada Pembelajaran Biologi. Jurnal Biotek, 6(2), 1–12. https://doi.org/10.24252/JB.V6I2.6395
Faizah, S., Nusantara, T., Sudirman, & Rahardi, R. (2020a). The Construction of Explicit Warrant Derived From Implicit Warrant in Mathematical Proof. AIP Conference Proceedings, 2215(June). https://doi.org/10.1063/5.0000517
Faizah, S., Nusantara, T., Sudirman, S., & Rahardi, R. (2020b). Exploring Students’ Thinking Process in Mathematical Proof of Abstract Algebra Based on Mason’s Framework. Journal for the Education of Gifted Young Scientists, 8(2), 871–884. https://doi.org/10.17478/JEGYS.689809
Faizah, S., Rahmawati, N. D., & Murniasih, T. R. (2021). Investigasi Struktur Argumen Mahasiswa Dalam Pembuktian Aljabar Berdasarkan Skema Toulmin. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(3), 1466. https://doi.org/10.24127/ajpm.v10i3.3781
Findell, B. (2001). Learning and Understanding in Abstract Algebra. Doctoral Dissertations. https://scholars.unh.edu/dissertation/51
Hanna, G. (2018). Reflections on Proof as Explanation. In A. J. Stylianides & G. Harel (Eds.), Advances in Mathematics Education Research on Proof and Proving: An International Perspective (pp. 3–18). Springer International Publishing. https://doi.org/10.1007/978-3-319-70996-3_1
Imamoglu, Y., & Togrol, A. Y. (2015). Proof Construction and Evaluation Practices of Prospective Mathematics Educators. European Journal of Science and Mathematics Education, 3(2), 130–144. https://doi.org/10.30935/scimath/9427
Inglis, M., Ramos, J. P. M., & Simpson, A. (2007). Modelling Mathematical Argumentation: The Importance of Qualification. Educational Studies in Mathematics, 66, 3–21. https://doi.org/10.1007/s10649-006-9059-8
Isnarto, Wahyudin, Suryadi, D., & Dahlan, J. A. (2014). Students’ Proof Ability: Exploratory Studies of Abstract Algebra Course. International Journal of Education and Research, 2(6). www.ijern.com
Knipping, C., & Reid, D. A. (2019). Argumentation Analysis for Early Career Researchers. In G. Kaiser & N. Presmeg (Eds.), Compendium for Early Career Researchers in Mathematics Education (pp. 3–31). Springer International Publishing. https://doi.org/10.1007/978-3-030-15636-7_1
Laamena, C. M., & Nusantara, T. (2019). Prospective Mathematics Teachers’ Argumentation Structure When Constructing A Mathematical Proof: The Importance of Backing. Beta: Jurnal Tadris Matematika, 12(5), 43–59. https://doi.org/10.20414/betajtm.v12i1.272
Lee, K. S. (2016). Students’ proof schemes for mathematical proving and disproving of propositions. The Journal of Mathematical Behavior, 41, 26–44. https://doi.org/10.1016/J.JMATHB.2015.11.005
Lin, P.-J. (2018). The Development of Students’ Mathematical Argumentation in a Primary Classroom. Educacao and Realidade, 43(3), 1171–1192. https://doi.org/10.1590/2175-623676887
Moore, R. C. (2016). Mathematics Professors’ Evaluation of Students’ Proofs: A Complex Teaching Practice. International Journal of Research in Undergraduate Mathematics Education 2016 2:2, 2(2), 246–278. https://doi.org/10.1007/S40753-016-0029-Y
Nadlifah, M., & Prabawanto, S. (2017). Mathematical Proof Construction: Students’ Ability in Higher Education. Journal of Physics: Conference Series, 895(1). https://doi.org/10.1088/1742-6596/895/1/012094
Pala, O., Aksoy, E., & Narli, S. (2021). Can the Proof Image Exist in the Absence of the Formal Proof?: Analyses of an Unsuccessful Proving Attempt. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 15(1), 1–31. https://doi.org/10.17522/balikesirnef.843527
Piaget, J. (1964). Part I: Cognitive development in children: Piaget development and learning. Journal of Research in Science Teaching, 2(3), 176–186. https://doi.org/10.1002/TEA.3660020306
Pramasdyahsari, A. S., Buchori, A., & Rasiman, R. (2022). Mathematical Proving Ability of Pre-service Teachers in Online and Blended Learning. KnE Social Sciences, 2022, 1021–1031–1021–1031. https://doi.org/10.18502/KSS.V7I14.12052
Rabin, J. M., & Quarfoot, D. (2021). Sources of Students’ Difficulties with Proof By Contradiction. International Journal of Research in Undergraduate Mathematics Education, 8(3), 521–549. https://doi.org/10.1007/S40753-021-00152-X/TABLES/3
Tall, D. (2004). Building Theories: The Three Worlds of Mathematics. For the Learning of Mathematics, 24(1), 29–32.
Tall, D. O. (2008). The Transition to Formal Thinking in Mathematics. Mathematics Education Research Journal, 20(2), 5–24. https://doi.org/10.1007/BF03217474/METRICS
Thomas, M. O. J., Druck, I. de F., Huillet, D., Ju, M.-K., Nardi, E., Rasmussen, C., & Xie, J. (2015). Key Mathematical Concepts in the Transition from Secondary School to University. The Proceedings of the 12th International Congress on Mathematical Education, 265–284. https://doi.org/10.1007/978-3-319-12688-3_18
Toulmin, S. E. (2003). The uses of argument: Updated edition. In The Uses of Argument: Updated Edition. https://doi.org/10.1017/CBO9780511840005
Tristanti, L. B., Sutawidjaja, A., As’ari, A. R., & Muksar, M. (2015). Modelling Student Mathematical Argumentation With Structural-Intuitive and Deductive Warrant To Solve Mathematics Problem. Proceeding of ICERD 2015 MODELLING, January, 130–139.
Tristanti, L. B., Sutawidjaja, A., As’ari, A. R., & Muskar, M. (2016). The Construction of Deductive Warrant Derived from Inductive Warrant in Preservice-Teacher Mathematical Argumentations. Educational Research and Reviews, 11(17), 1696–1708. https://doi.org/10.5897/ERR2016.2872
Tristanti, L. B., Sutawidjaja, A., Rahman As’ari, A., & Muksar, M. (2017). Types of Warrant in Mathematical Argumentations of Prospective-Teacher. International Journal of Science and Engineering Investigations, 6, 68. www.IJSEI.com
Wasserman, N., Weber, K., Villanueva, M., & Mejia-Ramos, J. P. (2018). Mathematics teachers’ views about the limited utility of real analysis: A transport model hypothesis. The Journal of Mathematical Behavior, 50, 74–89. https://doi.org/10.1016/J.JMATHB.2018.01.004
Wittmann, E. C. (2021). When Is a Proof a Proof? Connecting Mathematics and Mathematics Education, 61–76. https://doi.org/10.1007/978-3-030-61570-3_5
DOI: http://dx.doi.org/10.21043/jpmk.v7i1.25793
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Editorial and Administration Office:
Jurnal Pendidikan Matematika (Kudus)
Tadris Matematika, Tarbiyah Faculty, Institut Agama Islam Negeri Kudus
Jl. Conge Ngembalrejo Po Box 51, Kudus, Jawa Tengah, Indonesia, Kode Pos: 59322
Email: [email protected]