Computational Thinking in Solving Arithmetic Sequences Problems for Slow Learners: Single Subject Research

Faradina Nilam Zulfa, Andriyani Andriyani

Abstract


The importance of mathematical problem-solving skill shows that it is very important to develop it as an integrated part of learning mathematics process. However, some prior research results show that students' problem-solving skill is still relatively low, especially for slow learners. The students as slow learners require external stimulation or encouragement to help them to simplify complex problems into simple one. One of stimulations or encouragements is a computational thinking technique. The computational thinking technique in this research includes four principles namely decomposition, abstraction, pattern recognition, and algorithms. This research aims to determine the use of computational thinking for slow learners in solving problems related to arithmetic sequences. The method used in this research is single-subject research having two students as research subjects in one group. The data collection techniques include observation and students’ test results and the data analysis techniques used are within-conditions analysis and between-conditions analysis with an A-B research design. The A-B research design is one of designs in Single Subject Research (SSR) method, with A as the baseline phase and B as the intervention phase. The results show that in the baseline phase, the students receive a final score in the range of 20 to 30 and in the intervention phase, after being given a computational thinking technique as a treatment, students' final scores increase to the range of 50 to 60. This shows that there is positive effect using computational thinking technique for slow learners in solving arithmetic sequences problems.

 

Pentingnya peran pemecahan masalah matematika menunjukkan perlunya mengembangkan kemampuan tersebut sebagai bagian integral dari pembelajaran matematika. Namun, beberapa hasil penelitian terdahulu menunjukkan bahwa kemampuan pemecahan masalah siswa masih terbilang rendah, terkhusus siswa lamban belajar. Keterbatasan siswa lamban belajar memerlukan rangsangan atau dorongan dari luar untuk membantu siswa lamban belajar menyederhanakan permasalahan yang kompleks menjadi beberapa masalah sederhana, seperti pendekatan berpikir komputasional. Pendekatan berpikir komputasi dalam penelitian ini mencakup empat prinsip, yakni dekomposisi, abstraksi, pengenalan pola dan algoritma. Penelitian ini bertujuan untuk mengetahui peran berpikir komputasi untuk siswa lamban belajar dalam menyelesaikan permasalahan terkait barisan aritmetika. Penelitian ini menggunakan metode Single Subject Research dimana subyek dalam penelitian ini adalah dua siswa dalam satu kelompok. Teknik pengumpulan data meliputi observasi dan hasil tes siswa. Teknik analisis data menggunakan analisis dalam kondisi dan analisis antar kondisi dengan desain penelitian A-B. Desain penelitian A-B merupakan salah satu desain dari Single Subject Research (SSR) dengan A sebagai fase baseline dan B sebagai fase intervensi. Hasil penelitian menunjukkan bahwa pada fase baseline, subjek mendapatkan skor akhir pada kisaran 20 hingga 30, dan pada fase intervensi, setelah diberikan perlakuan berupa pendekatan berpikir komputasi, skor akhir siswa meningkat menjadi dalam rentang 50 sampai 60. Hal ini menunjukkan bahwa penggunaan pendekatan berpikir komputasi berpengaruh positif terhadap pemecahan masalah siswa lamban belajar terkait barisan aritmatika.


Keywords


Single Subject Research; Slow Learner; Computational Thinking

Full Text:

PDF

References


Afriansyah, E. A. (2014). What Students’ Thinking about Contextual Problems is. In International Seminar on Innovation in Mathematics and Mathematics Education. Innovation and Technology for Mathematic (pp. 279–288).

Aminah, N., Leonardus, Y., Wardono, W., & Nur, A. (2022). Computational Thinking Process of Prospective Mathematics Teacher in Solving Diophantine Linear Equation Problems. European Journal of Educational Research, 11(3), 1495–1507. https://doi.org/10.12973/eu-jer.11.3.1495

Aminah, N., Sukestiyarno, Y. L., Cahyono, A. N., & Maat, S. M. (2023). Student activities in solving mathematics problems with a computational thinking using Scratch. International Journal of Evaluation and Research in Education (IJERE), 12(2), 613. https://doi.org/10.11591/ijere.v12i2.23308

Asih, N., & Ramdhani, S. (2019). Peningkatan Kemampuan Pemecahan Masalah Matematis dan Kemandirian Belajar Siswa Menggunakan Model Pembelajaran Means End Analysis. Mosharafa: Jurnal Pendidikan Matematika, 8(3), 435–446. https://doi.org/10.31980/mosharafa.v8i3.534

Awasthi, D. (2014). Slow but steady can also win race: A comment on the problems of slow learners. Asian Journal of Multi-Disciplinary Studies, 2(9), 53–57.

Aziz, A. N., Sugiman, S., & Prabowo, A. (2016). Analisis Proses Pembelajaran Matematika pada Anak Berkebutuhan Khusus (ABK) Slow Learner di Kelas Inklusif. Kreano, Jurnal Matematika Kreatif-Inovatif, 6(2), 111. https://doi.org/10.15294/kreano.v6i2.4168

Beecher, K. (2017). Computational Thinking: A Beginner’s Guide to Problem-Solving and Programming. Swindon, UK: BCS, The Chartered Institute for IT.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational thinking in compulsory education-Implications for policy and practice. Publications Office of the European Union.

Bouck, E. C., Sands, P., Long, H., & Yadav, A. (2021). Preparing Special Education Preservice Teachers to Teach Computational Thinking and Computer Science in Mathematics. Teacher Education and Special Education: The Journal of the Teacher Education Division of the Council for Exceptional Children, 44(3), 221–238. https://doi.org/10.1177/0888406421992376

Chambers, P. (2008). Teaching mathematics. SAGE.

Csizmadia, A., Curzon, P., Dorlng, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J. (2015). Computational thinking-A guide for teachers.

Eryandi, Y., Somakim, S., & Hartono, Y. (2016). Learning Materials Design Pattern Numbers Context Making Kemplang in Class IX. Journal on Mathematics Education, 7(2), 101–108. https://doi.org/10.22342/jme.7.2.3535.101-108

Fitri, R. M., Sumaryanto, T., & Rifaâ€TMi RC3, A. (2019). Thematic Learning Strategy of Teacher to Slow Learners in Inclusive Elementary School. Educational Management, 8(1), 124–130.

Freeman Suarez, M. D. R., Ramirez Berdut, I., & Ramirez Gueton, P. M. (2017). A challenge for teachers in class: How to cope with slow learners.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the Field. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Hafriani, H. (2021). Mengembangkan Kemampuan Dasar Matematika Siswa Berdasarkan Nctm Melalui Tugas Terstruktur Dengan Menggunakan ICT (Developing The Basic Abilities of Mathematics Students Based on NCTM Through Structured Tasks Using ICT). JURNAL ILMIAH DIDAKTIKA: Media Ilmiah Pendidikan dan Pengajaran, 22(1), 63. https://doi.org/10.22373/jid.v22i1.7974

Hardiyanti, A. (2016). Analisis Kesulitan Siswa Kelas IX SMP Dalam Menyelesaikan Soal Pada Materi Barisan dan Deret.

Ismi, D. P., Normawati, D., & Murinto, M. (2020). Pelatihan computational thinking bagi guru dan siswa SMA/SMK/MA Muhammadiyah di Wilayah Kota Yogyakarta. In Prosiding Seminar Nasional Hasil Pengabdian Kepada Masyarakat Universitas Ahmad Dahlan (1st ed., Vol. 2, pp. 379–388).

Khine, M. S. (Ed.). (2018). Computational Thinking in the STEM Disciplines: Foundations and Research Highlights. Springer International Publishing. https://doi.org/10.1007/978-3-319-93566-9

Liao, C. H., Chiang, C.-T., Chen, I.-C., & Parker, K. R. (2022). Exploring the relationship between computational thinking and learning satisfaction for non-STEM college students. International Journal of Educational Technology in Higher Education, 19(1), 43. https://doi.org/10.1186/S41239-022-00347-5

Lisnawati, L., & Muthmainah, M. (2018). Efektivitas Metode Sas (Struktur Analitik Sintetik) dalam Meningkatkan Keterampilan Membaca Bagi Anak Lambat Belajar (Slow Learner) Di SDN DEMANGAN. Jurnal Psikologi Integratif, 6(1), 81. https://doi.org/10.14421/jpsi.v6i1.1468

Maharani, A. (2020). Computational Thinking dalam Pembelajaran Matematika Menghadapi Era Society 5.0. Euclid, 7(2), 86. https://doi.org/10.33603/e.v7i2.3364

Mardhiyana, D., & Sejati, E. O. W. (2016). Mengembangkan Kemampuan Berpikir Kreatif dan Rasa Ingin Tahu Melalui Model Pembelajaran Berbasis Masalah. In PRISMA, Prosiding Seminar Nasional Matematika: Vol. February (pp. 672–688).

Marliani, N. (2015). Peningkatan Kemampuan Berpikir Kreatif Matematis Siswa melalui Model Pembelajaran Missouri Mathematics Project (MMP). Formatif: Jurnal Ilmiah Pendidikan MIPA, 5. http://dx.doi.org/10.30998/formatif.v5i1.166

Molina-Ayuso, Á., Adamuz-Povedano, N., Bracho-López, R., & Torralbo-Rodríguez, M. (2022). Introduction to Computational Thinking with Scratch for Teacher Training for Spanish Primary School Teachers in Mathematics. Education Sciences, 12(12), 899. https://doi.org/10.3390/educsci12120899

Napitupulu, E. E. (2008). Mengembangkan Strategi dan Kemampuan Siswa Memecahkan Masalah Matematik. Pythagoras: Jurnal Matematika dan Pendidikan Matematika, 4(2), 26–36. https://doi.org/10.21831/pg.v4i2.557

Painagoni, K. (2018). Role of Teachers and Parents in Honing Their Hidden Talents of Slow Learners. Int. J. Adv. Reseach, 5(3), 3–6.

Pimta, S., Tayruakham, S., & Nuangchale, P. (2009). Factors Influencing Mathematic Problem-Solving Ability of Sixth Grade Students. Journal of Social Sciences, 5(4), 381–385. https://doi.org/10.3844/jssp.2009.381.385

Posamentier, A. S., Smith, B. S., & Stepelman, J. S. (2010). Teaching secondary mathematics techniques and enrichment units 8th Edition.

Putranto, S. & Marsigit. (2018). Does Peer Tutoring with Realistic Mathematics Education Approach Effective to Develop Conceptual Understanding of Slow Learners? Journal of Physics: Conference Series, 1097, 012127. https://doi.org/10.1088/1742-6596/1097/1/012127

Ready Lokanadha, G., Ramar, R., & Kusuma, A. (2006). Slow learners, Their Psychology and Instruction. Discovery Publishing House.

Siswati, N. (2010). Pengaruh Social Stories Terhadap Keterampilan Sosial Anak Dengan Attention-Deficit Hyperactivity Disorder (ADHD). Jurnal Psikologi Undip, 8(2), 106–123.

Sopian, Y. A., & Afriansyah, E. A. (2017). Kemampuan Proses Pemecahan Masalah Matematis Siswa melalui Model Pembelajaran Creative Problem Solving dan Resource Based Learning (Studi Eksperimen pada Siswa Kelas X SMK Krija Bhakti Utama Limbangan). Jurnal Elemen, 3(1), 97. https://doi.org/10.29408/jel.v3i1.317

Sugiyarta, A. W., & Andriyani. (2020). Computational Thinking Learning to Improve Slow Learner Critical Thinking Ability in Linear Programming Materials at SMA Muhammadiyah 3 Yogyakarta.

Sulistiani, E. & Masrukan. (2017). Pentingnya Berpikir Kritis dalam Pembelajaran Matematika untuk Menghadapi Tantangan MEA. Prosiding Seminar Nasional Matematika, 605–612.

Sunanto, J., Takeuchi, K., & Nakata, H. (2006). Penelitian dengan subjek tunggal. Bandung: UPI Press.

Suryani, M., Jufri, L. H., & Putri, T. A. (2020). Analisis Kemampuan Pemecahan Masalah Siswa Berdasarkan Kemampuan Awal Matematika. Mosharafa: Jurnal Pendidikan Matematika, 9(1), 119–130. https://doi.org/10.31980/mosharafa.v9i1.605

Tias, A. A. W., & Wutsqa, D. U. (2015). Analisis Kesulitan Siswa SMA dalam Pemecahan Masalah Matematika Kelas XII IPA di Kota Yogyakarta. Jurnal Riset Pendidikan Matematika, 2(1), 28. https://doi.org/10.21831/jrpm.v2i1.7148

Utami, R. W., & Wutsqa, D. U. (2017). Analisis Kemampuan Pemecahan Masalah Matematika dan Self-efficacy Siswa SMP Negeri di Kabupaten Ciamis. Jurnal Riset Pendidikan Matematika, 4(2), 166. https://doi.org/10.21831/jrpm.v4i2.14897

Wulandari, M., & Setiawan, W. (2021). Analisis Kesulitan dalam Menyelesaikan Soal Materi Barisan pada Siswa SMA. Jurnal Pembelajaran Matematika Inovatif, 4(3), 571–578. https://doi.org/10.22460/jpmi.v4i3.571-578

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational Thinking for All: Pedagogical Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms. TechTrends, 60(6), 565–568. https://doi.org/10.1007/s11528-016-0087-7

Yeliz, Y. (2015). Sixth graders and non-routine problems: Which Strategies are Decisive for Success? Educational Research and Reviews, 10(13), 1807–1816. https://doi.org/10.5897/ERR2015.2230




DOI: http://dx.doi.org/10.21043/jpmk.v6i1.20406

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Editorial and Administration Office:

Jurnal Pendidikan Matematika (Kudus)
Tadris Matematika, Tarbiyah Faculty, Institut Agama Islam Negeri Kudus
Jl. Conge Ngembalrejo Po Box 51, Kudus, Jawa Tengah, Indonesia, Kode Pos: 59322

Email: [email protected]

P-ISSN 2615-3939 | E-ISSN 2723-1186