Assessment of Chemical Oxygen Demand Removal Efficiency and Microbial Dynamics during Aerobically Degradation of Wastewater in Activated Sludge
Abstract
This study investigated aerobically COD removal and microbial dynamics during activated sludge treatment of wastewater. The 12-day experiment utilized descriptive analysis to correlate operational parameters of pH, F/M ratio, MLSS, and SVI with COD removal efficiency. Microscopic examination identified temporal shifts in abundances of bacterial flocs, flagellates, ciliates, and rotifers. COD removal declined from 79% on day 0 to 4% by day 12, corresponding with increased SVI and protozoan proliferation. High SVI caused biomass washout, reducing bacterial catabolic capacity. Predominance of bacterivorous protozoa and rotifers likely suppressed floc-forming bacteria responsible for COD biodegradation. Conserving balanced mixed communities through optimized operational conditions appears decisive for continuous treatment performance. This study provides comprehensions on microbial ecological interactions altering temporal variability in activated sludge COD removal.
Keywords
Full Text:
PDFReferences
Alexandre, V. M. F., de Castro, T. M. S., de Araújo, L. V., Santiago, V. M. J., Freire, D. M. G., & Cammarota, M. C. (2016). Minimizing solid wastes in an activated sludge system treating oil refinery wastewater. Chemical Engineering and Processing: Process Intensification, 103, 53–62. https://doi.org/10.1016/J.CEP.2015.10.021
Araújo dos Santos, L., Ferreira, V., Pereira, M. O., & Nicolau, A. (2014). Relationship between protozoan and metazoan communities and operation and performance parameters in a textile sewage activated sludge system. European Journal of Protistology, 50(4), 319–328. https://doi.org/10.1016/J.EJOP.2014.03.005
Baird, R., Rice, E., & Eaton, A. (2017). Standard methods for the examination of water and wastewaters. Water Environment Federation, Chair Eugene W. Rice, American Public Health Association Andrew D. Eaton, American Water Works Association.
Bitton, G. (2005). Wastewater Microbiology. Wastewater Microbiology. https://doi.org/10.1002/0471717967
Boguniewicz-Zablocka, J., Klosok-Bazan, I., Naddeo, V., & Mozejko, C. A. (2020). Cost-effective removal of COD in the pre-treatment of wastewater from the paper industry. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 81(7), 1345–1353. https://doi.org/10.2166/WST.2019.328
Canals, J., Cabrera-Codony, A., Carbó, O., Torán, J., Martín, M., Baldi, M., Gutiérrez, B., Poch, M., Ordóñez, A., & Monclús, H. (2023). High-rate activated sludge at very short SRT: Key factors for process stability and performance of COD fractions removal. Water Research, 231, 119610. https://doi.org/10.1016/J.WATRES.2023.119610
Cheibub, A. F., Campos, J. C., & da Fonseca, F. V. (2014). Removal of COD from a stabilized landfill leachate by physicochemical and advanced oxidative process. Journal of Environmental Science and Health, Part A, 49(14), 1718–1726.
Chen, H., Wang, H., Yu, G., Xiong, Y., Wu, H., Yang, M., Chen, R., Yang, E., Jiang, C., & Li, Y. Y. (2021). Key factors governing the performance and microbial community of one-stage partial nitritation and anammox system with bio-carriers and airlift circulation. Bioresource Technology, 324, 124668. https://doi.org/10.1016/J.BIORTECH.2021.124668
Cydzik-Kwiatkowska, A., & Zielińska, M. (2016). Bacterial communities in full-scale wastewater treatment systems. World Journal of Microbiology & Biotechnology, 32(4), 1–8. https://doi.org/10.1007/S11274-016-2012-9
Fyda, J., Babko, R., Fiałkowska, E., Pajdak-Stós, A., Kocerba-Soroka, W., Sobczyk, M., & Sobczyk, Ł. (2015). Effect of high levels of the rotifer Lecane inermis on the ciliate community in laboratory-scale sequencing batch bioreactors (SBRs). European Journal of Protistology, 51(5), 470–479. https://doi.org/10.1016/J.EJOP.2015.09.001
Ghosh, P., Swati, & Thakur, I. S. (2014). Enhanced removal of COD and color from landfill leachate in a sequential bioreactor. Bioresource Technology, 170, 10–19.
Hafez, A. I., Khedr, M. A., Osman, R. M., Hafez, A. I., Khedr, M. A., & Osman, R. M. (2012). Flax Retting Wastewater Part 1: Anaerobic Treatment by Using UASB Reactor. Natural Resources, 3(4), 191–200. https://doi.org/10.4236/NR.2012.34026
Harefa, N., Gulo, A., & Silaban, S. (2021). Analysis of BOD and COD levels for home industry wastewater: A case study in a sewage streams. Jurnal Pendidikan Kimia (JPKIM), 13(1), 38–47. https://doi.org/10.24114/JPKIM.V13I1.24142
Jagaba, A. H., Kutty, S. R. M., Baloo, L., Hayder, G., Birniwa, A. H., Taha, A. T. B., Mnzool, M., & Lawal, I. M. (2022). Waste Derived Biocomposite for Simultaneous Biosorption of Organic Matter and Nutrients from Green Straw Biorefinery Effluent in Continuous Mode Activated Sludge Systems. Processes, 10(11), 2262. https://doi.org/10.3390/PR10112262/S1
Jagaba, A. H., Kutty, S. R. M., Noor, A., Isah, A. S., Lawal, I. M., Birniwa, A. H., Usman, A. K., & Abubakar, S. (2022). Kinetics of Pulp and Paper Wastewater Treatment by High Sludge Retention Time Activated Sludge Process. Journal of Hunan University Natural Sciences, 49(2), 242–251.
Janiak, K., Trusz, A., Miodoński, S., Muszyński-Huhajło, M., Ratkiewicz, K., Zięba, B., Jurga, A., Struk-Sokołowska, J., & Ofman, P. (2023). Comparing methods for protozoa removal in activated sludge. Separation and Purification Technology, 306, 122729. https://doi.org/10.1016/J.SEPPUR.2022.122729
Kan, S. L. E., Fahmi, M. R., Ibrahim, A. H., Abidin, C. Z. A., & Khoo, A. S. (2021). The impact of high biodegradable COD fraction in poultry processing wastewater to SBR performance. IOP Conference Series: Earth and Environmental Science, 646(1), 012064. https://doi.org/10.1088/1755-1315/646/1/012064
Kawai, M., Nagao, N., Kawasaki, N., Imai, A., & Toda, T. (2016). Improvement of COD removal by controlling the substrate degradability during the anaerobic digestion of recalcitrant wastewater. Journal of Environmental Management, 181, 838–846. https://doi.org/10.1016/J.JENVMAN.2016.06.057
khalidi-idrissi, A., Madinzi, A., Anouzla, A., Pala, A., Mouhir, L., Kadmi, Y., & Souabi, S. (2023). Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. International Journal of Environmental Science and Technology 2023 20:10, 20(10), 11719–11740. https://doi.org/10.1007/S13762-023-04867-Z
Khumalo, S. M., Bakare, B. F., Tetteh, E. K., & Rathilal, S. (2022). Sequencing Batch Reactor Performance Evaluation on Orthophosphates and COD Removal from Brewery Wastewater. Fermentation 2022, Vol. 8, Page 296, 8(7), 296. https://doi.org/10.3390/FERMENTATION8070296
Kuśnierz, M., Domańska, M., Hamal, K., & Pera, A. (2022). Application of Integrated Fixed-Film Activated Sludge in a Conventional Wastewater Treatment Plant. International Journal of Environmental Research and Public Health 2022, Vol. 19, Page 5985, 19(10), 5985. https://doi.org/10.3390/IJERPH19105985
Lee, S. A., Lee, N., Oh, H. M., & Ahn, C. Y. (2019). Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge. J. Microbiol. Biotechnol., 29(9), 1434–1443. https://doi.org/10.4014/JMB.1905.05034
Li, D., Liang, X., Li, Z., Jin, Y., Zhou, R., & Wu, C. (2020). Effect of chemical oxygen demand load on the nitrification and microbial communities in activated sludge from an aerobic nitrifying reactor. Canadian Journal of Microbiology, 66(1), 59–70. https://doi.org/10.1139/CJM-2018-0599
Lin, H., Huang, X., Chang, J., Li, B., Bai, Y., Su, B., Shi, L., & Dong, Y. (2023). Improving sludge settling performance of secondary settling tank and simultaneously adsorbing nitrate and phosphate with surfactant modified zeolite (SMZ) ballasted flocculation. Journal of Environmental Chemical Engineering, 11(3), 109650. https://doi.org/10.1016/J.JECE.2023.109650
Lin, S. S., Shen, S. L., Zhou, A., & Lyu, H. M. (2021). Assessment and management of lake eutrophication: A case study in Lake Erhai, China. Science of The Total Environment, 751, 141618. https://doi.org/10.1016/J.SCITOTENV.2020.141618
Liu, Y., Guo, J., Wang, Q., & Huang, D. (2016). Prediction of Filamentous Sludge Bulking using a State-based Gaussian Processes Regression Model. Scientific Reports 2016 6:1, 6(1), 1–11. https://doi.org/10.1038/srep31303
Madoni, P. (2011). Protozoa in wastewater treatment processes: A minireview. Italian Journal of Zoology, 78(1), 3–11. https://doi.org/10.1080/11250000903373797
Maltos, R. A., Holloway, R. W., & Cath, T. Y. (2020). Enhancement of activated sludge wastewater treatment with hydraulic selection. Separation and Purification Technology, 250, 117214. https://doi.org/10.1016/J.SEPPUR.2020.117214
Meena, M., Yadav, G., Sonigra, P., & Shah, M. P. (2022). A comprehensive review on application of bioreactor for industrial wastewater treatment. Letters in Applied Microbiology, 74(2), 131–158. https://doi.org/10.1111/LAM.13557
Mesquita, D. P., Amaral, A. L., & Ferreira, E. C. (2011). Identifying different types of bulking in an activated sludge system through quantitative image analysis. Chemosphere, 85(4), 643–652. https://doi.org/10.1016/J.CHEMOSPHERE.2011.07.012
Metcalf, & Eddy. (2003). Wastewater engineering: Treatment and reuse (4th ed.). McGraw-Hill.
Mirbagheri, S. A., Ebrahimi, M., & Mohammadi, M. (2014). Optimization method for the treatment of Tehran petroleum refinery wastewater using activated sludge contact stabilization process. New Pub: Balaban, 52(1–3), 156–163. https://doi.org/10.1080/19443994.2013.794105
Mirbolooki, H., Amirnezhad, R., & Pendashteh, A. R. (2017). Treatment of high saline textile wastewater by activated sludge microorganisms. Journal of Applied Research and Technology. JART, 15(2), 167–172. https://doi.org/10.1016/J.JART.2017.01.012
Modak, T., Pradhan, S., & Watve, M. (2007). Sociobiology of biodegradation and the role of predatory protozoa in biodegrading communities. Journal of Biosciences, 32(4), 775–780. https://doi.org/10.1007/S12038-007-0078-0
Mukhtar, G., Retno, I., M, T., Fajar, N., & Satria, A. (2019). The Reduction of COD Levels in Domestic Waste Water Using Combination of Activated Sludge Methode – Activated Carbon Continously. Journal of Physics: Conference Series, 1295(1), 12040.
Seviour, R. J., & Nielsen, P. H. (2010). Microbial ecology of activated sludge. IWA Publishing.
Shchegolkova, N. M., Krasnov, G. S., Belova, A. A., Dmitriev, A. A., Kharitonov, S. L., Klimina, K. M., Melnikova, N. V., & Kudryavtseva, A. V. (2016). Microbial Community Structure of Activated Sludge in Treatment Plants with Different Wastewater Compositions. Frontiers in Microbiology, 7(FEB). https://doi.org/10.3389/FMICB.2016.00090
Shi, L., Liu, N., Liu, G., & Fang, J. (2021). Bacterial Community Structure and Dynamic Changes in Different Functional Areas of a Piggery Wastewater Treatment System. Microorganisms, 9(10). https://doi.org/10.3390/MICROORGANISMS9102134
Siqueira-Castro, I. C. V., Greinert-Goulart, J. A., Rossetto, R., Guimarães, J. R., & Franco, R. M. B. (2016). Ciliated protozoa community of a combined UASB–activated sludge system in southeastern Brazil. Environmental Science and Pollution Research, 23(23), 23804–23814. https://doi.org/10.1007/S11356-016-7591-3/TABLES/3
Smith, N. R., Yu, Z., & Mohn, W. W. (2003). Stability of the bacterial community in a pulp mill effluent treatment system during normal operation and a system shutdown. Water Research, 37(20), 4873–4884. https://doi.org/10.1016/J.WATRES.2003.08.019
Sun, S., Noorian, P., & McDougald, D. (2018). Dual role of mechanisms involved in resistance to predation by protozoa and virulence to humans. Frontiers in Microbiology, 9(MAY), 374007. https://doi.org/10.3389/FMICB.2018.01017/BIBTEX
Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., & Burton, F. (2014). Wastewater engineering: Treatment and resource recovery (5th ed.). McGraw-Hill.
Thi Tuyet Nhi, N., Thi Thuy Van, P., Thi Thao, N., Thi Thanh Truc, N., Le Truong Khanh Hung, T., Thi Ngoc Tay, D., Tan Nhut, H., & Trung Hiep, N. (2022). Optimization Removal of COD and Nitrogen at Different Hydraulic Retention Times in Biocord-Integrated Fixed-Film Activated Sludge System. Environment and Natural Resources Journal, 20(4), 1–8.
Vincent, N. M., Wei, Y., Zhang, J., Yu, D., & Tong, J. (2018). Characterization and Dynamic Shift of Microbial Communities during Start-Up, Overloading and Steady-State in an Anaerobic Membrane Bioreactor. International Journal of Environmental Research and Public Health, 15(7). https://doi.org/10.3390/IJERPH15071399
Waqas, S., Harun, N. Y., Sambudi, N. S., Abioye, K. J., Zeeshan, M. H., Ali, A., Abdulrahman, A., Alkhattabi, L., & Alsaadi, A. S. (2023). Effect of Operating Parameters on the Performance of Integrated Fixed-Film Activated Sludge for Wastewater Treatment. Membranes 2023, Vol. 13, Page 704, 13(8), 704. https://doi.org/10.3390/MEMBRANES13080704
Zhang, M., Yao, J., Wang, X., Hong, Y., & Chen, Y. (2019). The microbial community in filamentous bulking sludge with the ultra-low sludge loading and long sludge retention time in oxidation ditch. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-019-50086-3
DOI: http://dx.doi.org/10.21043/jobe.v6i2.22833
Refbacks
- There are currently no refbacks.