Isolation and Characterization of Enterobacter sp Capable towards Tolerating Degradation Products and Fermenting Pentoses

Karim El Ouahbi, Abdelghani El Asli, Mohammed Benlemlih

Abstract


The depletion of fossil fuel resources, in addition to the growing demand for energy, has prompted the development of renewable energies, including bioethanol from lignocellulosic biomass. The acid pretreatment of hemicellulose releases inhibiting compounds in addition to xylose. With the possibility of exploitation of lignocellulose as a fermentation substrate, we isolated an Enterobacter characterized by its ability to ferment xylose and tolerate high concentrations of inhibitors. The selection was performed in media containing different carbon and energy sources; glucose, cellobiose, CMC, furfural and 5-HMF. Characterization strategies of the selected strain such as, xylose concentration (from 25 g liter-1 to 100 g liter-1), furfural (0 mM to 25 mM), cell immobilization, were used to quantify the maximum yield of ethanol produced. The results obtained show that our strain can ferment up to 100 g liter-1 of xylose in the presence of 20 mM furfural at 37°C to produce ethanol with a maximum yield of 2.22 g liter- 1 for 24 h under 160 rpm magnetic stirring. The results obtained in this study suggest that the isolated Enterobacter sp. is a promising strain for the bioconversion of lignocellulosic biomass pretreatment hydrolysate into bioethanol.

 


Keywords


Lignocellulose, xylose, ethanol, furfural, Enterobacter cloacae

Full Text:

PDF

References


Allen, Sandra A., William Clark, J. Michael McCaffery, Zhen Cai, Alison Lanctot, Patricia J. Slininger, Z. Lewis Liu, et Steven W. Gorsich. 2010. « Furfural Induces Reactive Oxygen Species Accumulation and Cellular Damage in Saccharomyces Cerevisiae ». Biotechnology for Biofuels 3(1):2. doi: 10.1186/1754-6834-3-2.

Bi, Changhao, John D. Rice, et James F. Preston. 2009. « Complete Fermentation of Xylose and Methylglucuronoxylose Derived from Methylglucuronoxylan by Enterobacter Asburiae Strain JDR-1 ». Applied and Environmental Microbiology 75(2):395‑404. doi: 10.1128/AEM.01941-08.

Cadete, Raquel M., et Carlos A. Rosa. 2018. « The Yeasts of the Genus Spathaspora : Potential Candidates for Second‐generation Biofuel Production ». Yeast 35(2):191‑99. doi: 10.1002/yea.3279.

Camargo Guarnizo, Andrés Felipe, Adenise Lorenci Woiciechowski, Miguel Daniel Noseda, Luis Alberto Zevallos Torres, Arion Zandona Filho, Luiz Pereira Ramos, Luiz Alberto Júnior Letti, et Carlos Ricardo Soccol. 2021. « Pentose-Rich Hydrolysate from Oil Palm Empty Fruit Bunches for β-Glucan Production Using Pichia Jadinii and Cyberlindnera Jadinii ». Bioresource Technology 320:124212. doi: 10.1016/j.biortech.2020.124212.

Choonut, Aophat, Makorn Saejong, et Kanokphorn Sangkharak. 2014. « The Production of Ethanol and Hydrogen from Pineapple Peel by Saccharomyces Cerevisiae and Enterobacter Aerogenes ». Energy Procedia 52:242‑49. doi: 10.1016/j.egypro.2014.07.075.

Chowdhury, Harun, Bavin Loganathan, Israt Mustary, Firoz Alam, et Saleh M. A. Mobin. 2019. « Algae for Biofuels: The Third Generation of Feedstock ». P. 323‑44 in Second and Third Generation of Feedstocks. Elsevier.

Correa, Diego F., Hawthorne L. Beyer, Hugh P. Possingham, Skye R. Thomas-Hall, et Peer M. Schenk. 2017. « Biodiversity Impacts of Bioenergy Production: Microalgae vs. First Generation Biofuels ». Renewable and Sustainable Energy Reviews 74:1131‑46. doi: 10.1016/j.rser.2017.02.068.

Didderen, Isabelle, Jacqueline Destain, et Philippe Thonart. 2010. « LA PRODUCTION DE BIOÉTHANOL À PARTIR DE BIOMASSE LIGNOCELLULOSIQUE ».

Dogaris, Ioannis, Diomi Mamma, et Dimitris Kekos. 2013. « Biotechnological Production of Ethanol from Renewable Resources by Neurospora Crassa: An Alternative to Conventional Yeast Fermentations? » Applied Microbiology and Biotechnology 97(4):1457‑73. doi: 10.1007/s00253-012-4655-2.

Garrigues, Christel, Myriam Mercade, Pascal Loubière, Nic D. Lindley, et Muriel Cocaign-Bousquet. 1998. « Comportement métabolique de Lactococcus lactis en réponse à l’environnement ». Le Lait 78(1):145‑55. doi: 10.1051/lait:1998118.

Goma, Mr G. s. d. « Mr. J. M. ENGASSER Mr. J. FAGES Mr. S. GUILLOUET ».

Gong, Gyeongtaek, Youngsoon Um, Tai Hyun Park, et Han Min Woo. 2015. « Complete Genome Sequence of Enterobacter Cloacae GGT036: A Furfural Tolerant Soil Bacterium ». Journal of Biotechnology 193:43‑44. doi: 10.1016/j.jbiotec.2014.11.012.

Gutierrez, Tony, Lonnie O. Ingram, et James F. Preston. 2002. « Reduction of Furfural to Furfuryl Alcohol by Ethanologenic Strains of Bacteria and Its Effect on Ethanol Production from Xylose ». Applied Biochemistry and Biotechnology.

Gutiérrez, Tony, Lonnie O. Ingram, et James F. Preston. 2006. « Purification and Characterization of a Furfural Reductase (FFR) from Escherichia Coli Strain LYO1—An Enzyme Important in the Detoxification of Furfural during Ethanol Production ». Journal of Biotechnology 121(2):154‑64. doi: 10.1016/j.jbiotec.2005.07.003.

Hinman, Norman D., John D. Wright, William Hogland, et Charles E. Wyman. 1989. « Xylose Fermentation: An Economic Analysis ». Applied Biochemistry and Biotechnology 20‑21(1):391‑401. doi: 10.1007/BF02936498.

Kastner, J. R., W. J. Jones, et R. S. Roberts. 1998. « Simultaneous Utilization of Glucose and D-Xylose by Candida Shehatae in a Chemostat ». Journal of Industrial Microbiology & Biotechnology 20(6):339‑43. doi: 10.1038/sj.jim.2900536.

Kawaguchi, Hideo, Alain A. Vertès, Shohei Okino, Masayuki Inui, et Hideaki Yukawa. 2006. « Engineering of a Xylose Metabolic Pathway in Corynebacterium Glutamicum ». Applied and Environmental Microbiology 72(5):3418‑28. doi: 10.1128/AEM.72.5.3418-3428.2006.

Kumari, Dolly, et Radhika Singh. 2018. « Pretreatment of Lignocellulosic Wastes for Biofuel Production: A Critical Review ». Renewable and Sustainable Energy Reviews 90:877‑91. doi: 10.1016/j.rser.2018.03.111.

Lavoie, Jean-Michel, Esteban Chornet, et Denis Groleau. s. d. « Sherbrooke (Québec) Canada ».

Lee, Hung, Peter Biely, Roger K. Latta, Maria F. S. Barbosa, et Henry Schneider. 1986. « Utilization of Xylan by Yeasts and Its Conversion to Ethanol by Pichia Stipitis Strainst ». APPL. ENVIRON. MICROBIOL. 52.

Li, Lixiang, Kun Li, Yu Wang, Chao Chen, Youqiang Xu, Lijie Zhang, Binbin Han, Chao Gao, Fei Tao, Cuiqing Ma, et Ping Xu. 2015. « Metabolic Engineering of Enterobacter Cloacae for High-Yield Production of Enantiopure (2 R ,3 R )-2,3-Butanediol from Lignocellulose-Derived Sugars ». Metabolic Engineering 28:19‑27. doi: 10.1016/j.ymben.2014.11.010.

Long, Chuannan, Jingjing Cui, Zuotao Liu, Yuntao Liu, Minnan Long, et Zhong Hu. 2010. « Statistical Optimization of Fermentative Hydrogen Production from Xylose by Newly Isolated Enterobacter Sp. CN1 ». International Journal of Hydrogen Energy 35(13):6657‑64. doi: 10.1016/j.ijhydene.2010.04.094.

Lorenci Woiciechowski, Adenise, Carlos José Dalmas Neto, Luciana Porto De Souza Vandenberghe, Dão Pedro De Carvalho Neto, Alessandra Cristine Novak Sydney, Luiz Alberto Junior Letti, Susan Grace Karp, Luis Alberto Zevallos Torres, et Carlos Ricardo Soccol. 2020. « Lignocellulosic Biomass: Acid and Alkaline Pretreatments and Their Effects on Biomass Recalcitrance – Conventional Processing and Recent Advances ». Bioresource Technology 304:122848. doi: 10.1016/j.biortech.2020.122848.

L�pez, M. J., N. N. Nichols, B. S. Dien, J. Moreno, et R. J. Bothast. 2004. « Isolation of Microorganisms for Biological Detoxification of Lignocellulosic Hydrolysates ». Applied Microbiology and Biotechnology 64(1):125‑31. doi: 10.1007/s00253-003-1401-9.

Mansouri, A., R. Rihani, et F. Bentahar. 2019. « Étude de la production de bioéthanol biocarburant à partir de sous-produits agricoles : Effet de l’aération ». (3).

Martins, Florinda, Carlos Felgueiras, Miroslava Smitkova, et Nídia Caetano. 2019. « Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries ». Energies 12(6):964. doi: 10.3390/en12060964.

Miller, G. L. 1959. « Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar ». Analytical Chemistry 31(3):426‑28. doi: 10.1021/ac60147a030.

Modi, Krunal, Bhrugesh Joshi, et Prittesh Patel. 2018. « Isolation and Characterization of Xylose Fermenting Yeast from Different Fruits for Bioethanol Production ». International Journal of Current Microbiology and Applied Sciences 7(1):2426‑35. doi: 10.20546/ijcmas.2018.701.292.

Mussatto, S. I., et J. A. Teixeira. 2010. « Lignocellulose as Raw Material in Fermentation Processes ».

Nishikawa, Nora K., Roger Sutcliffe, et John N. Saddler. 1988. « The Influence of Lignin Degradation Products on Xylose Fermentation by Klebsiella Pneumoniae ». Applied Microbiology and Biotechnology 27(5‑6):549‑52. doi: 10.1007/BF00451630.

Ogier, J. C., J. P. Leygue, D. Ballerini, J. Pourquie, et L. Rigal. 1999. « Production d’éthanol a partir de biomasse lignocellulosique ». Oil & Gas Science and Technology 54(1):67‑94. doi: 10.2516/ogst:1999004.

Pachapur, Vinayak Laxman, Saurabh Jyoti Sarma, Satinder Kaur Brar, Yann Le Bihan, Gerardo Buelna, et Mausam Verma. 2017. « Hydrogen Production from Biodiesel Industry Waste by Using a Co-Culture of Enterobacter Aerogenes and Clostridium Butyricum ». Biofuels 8(6):651‑62. doi: 10.1080/17597269.2015.1122471.

Sarkar, Debapriya, Sushant Prajapati, Kasturi Poddar, et Angana Sarkar. 2019. « Production of Ethanol by Enterobacter Sp. EtK3 during Fruit Waste Biotransformation ». International Biodeterioration & Biodegradation 145:104795. doi: 10.1016/j.ibiod.2019.104795.

Selim, Samy, Mohamed Abdel-Mawgoud, Tarak Al-sharary, Mohammed S. Almuhayawi, Mohammed H. Alruhaili, Soad K. Al Jaouni, Mona Warrad, Hussein S. Mohamed, Nosheen Akhtar, et Hamada AbdElgawad. 2021. « Pits of Date Palm: Bioactive Composition, Antibacterial Activity and Antimutagenicity Potentials ». Agronomy 12(1):54. doi: 10.3390/agronomy12010054.

Soares, L. B., C. I. D. G. Bonan, L. E. Biazi, S. R. Dionísio, M. L. Bonatelli, A. L. D. Andrade, E. C. Renzano, A. C. Costa, et J. L. Ienczak. 2020. « Investigation of Hemicellulosic Hydrolysate Inhibitor Resistance and Fermentation Strategies to Overcome Inhibition in Non-Saccharomyces Species ». Biomass and Bioenergy 137:105549. doi: 10.1016/j.biombioe.2020.105549.

Sonderegger, Marco, et Uwe Sauer. 2003. « Evolutionary Engineering of Saccharomyces Cerevisiae for Anaerobic Growth on Xylose ». Applied and Environmental Microbiology 69(4):1990‑98. doi: 10.1128/AEM.69.4.1990-1998.2003.

Talebnia, Farid, et Mohammad J. Taherzadeh. 2006. « In Situ Detoxification and Continuous Cultivation of Dilute-Acid Hydrolyzate to Ethanol by Encapsulated S. Cerevisiae ». Journal of Biotechnology 125(3):377‑84. doi: 10.1016/j.jbiotec.2006.03.013.

Vasylyshyn, Roksolana, Olena Kurylenko, Justyna Ruchala, Nadiya Shevchuk, Neringa Kuliesiene, Galina Khroustalyova, Alexander Rapoport, Rimantas Daugelavicius, Kostyantyn Dmytruk, et Andriy Sibirny. 2020. « Engineering of Sugar Transporters for Improvement of Xylose Utilization during High-Temperature Alcoholic Fermentation in Ogataea Polymorpha Yeast ». Microbial Cell Factories 19(1):96. doi: 10.1186/s12934-020-01354-9.

Vigouroux, Rolando Zanzi. s. d. « PYROLYSIS OF BIOMASS ».

Vuillemard, Jean-Christophe, Sylvie Terré, Stéphane Benoit, et Jean Amiot. 1988. « Protease Production by Immobilized Growing Cells of Serratia Marcescens and Myxococcus Xanthus in Calcium Alginate Gel Beads ». Applied Microbiology and Biotechnology 27(5‑6):423‑31. doi: 10.1007/BF00451607.

Wang, Ailong, Youqiang Xu, Cuiqing Ma, Chao Gao, Lixiang Li, Yu Wang, Fei Tao, et Ping Xu. 2012. « Efficient 2,3-Butanediol Production from Cassava Powder by a Crop-Biomass-Utilizer, Enterobacter Cloacae Subsp. Dissolvens SDM » édité par E. Cascales. PLoS ONE 7(7):e40442. doi: 10.1371/journal.pone.0040442.

Wickerham, Lynferd Joseph. s. d. « Taxonomy of Yeasts ».

Xu, Youqiang, Ailong Wang, Fei Tao, Fei Su, Hongzhi Tang, Cuiqing Ma, et Ping Xu. 2012. « Genome Sequence of Enterobacter Cloacae Subsp. Dissolvens SDM, an Efficient Biomass-Utilizing Producer of Platform Chemical 2,3-Butanediol ». Journal of Bacteriology 194(4):897‑98. doi: 10.1128/JB.06495-11.

Zaldivar, Jesus, Alfredo Martinez, et Lonnie O. Ingram. 1999. « Effect of Selected Aldehydes on the Growth and Fermentation of EthanologenicEscherichia Coli ». Biotechnology and Bioengineering 65(1):24‑33. doi: 10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2.

Zhang, Cuiying, Wei Li, Dongsheng Wang, Xuewu Guo, Lijuan Ma, et Dongguang Xiao. 2016. « Production of 2,3-Butanediol by Enterobacter Cloacae from Corncob-Derived Xylose ». TURKISH JOURNAL OF BIOLOGY 40:856‑65. doi: 10.3906/biy-1506-66.




DOI: http://dx.doi.org/10.21043/jobe.v6i2.22893

Refbacks

  • There are currently no refbacks.


Jobe Journal Indexed by :

http://journal.stainkudus.ac.id/indexing/crossref.jpghttp://journal.stainkudus.ac.id/indexing/googlescholar.jpgHasil gambar untuk gambar garba rujukan digital

http://journal.stainkudus.ac.id/indexing/sinta.jpg